Literatur zur thermischen Behaglichkeit

Akimoto, Takashi; Tanabe, Shin-ichi; Yanai, Takashi; Sasaki, Masato (2010): Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office. In: Building and Environment 45 (1), S. 45–50. DOI: 10.1016/j.buildenv.2009.06.022.

Alahmer, A.; Mayyas, Ahmed; Mayyas, Abed A.; Omar, M. A.; Shan, Dongri (2011): Vehicular thermal comfort models; a comprehensive review. In: Applied Thermal Engineering 31 (6-7), S. 995–1002. DOI: 10.1016/j.applthermaleng.2010.12.004.

Almesri, I.; Awbi, H. B.; Foda, E.; Siren, K. (2013): An Air Distribution Index for Assessing the Thermal Comfort and Air Quality in Uniform and Nonuniform Thermal Environments. In: Indoor and Built Environment 22 (4), S. 618–639. DOI: 10.1177/1420326X12451186.

Atmaca, Ibrahim; Kaynakli, Omer; Yigit, Abdulvahap (2007): Effects of radiant temperature on thermal comfort. In: Building and Environment 42 (9), S. 3210–3220. DOI: 10.1016/j.buildenv.2006.08.009.

Bedford, T. (1950): Environmental Warmth and Human Comfort. In: British Journal of Applied Physics 1950 (1, No 2), S. 33–38.

Belding, H. S.; Hatch, T. F. (1955): Index for evaluating heat stress in terms of resulting physiological strains. In: Heating, piping and air conditiong (27), S. 129–136.

Blagdan, Charles (1775): Experiments and observations in an heated room. In: Philosophical Transactions 65, S. 111–123.

Brager, Gail S.; de Dear, Richard J. (1998): Thermal adaptation in the built environment: a literature review. In: Energy and Buildings (27), S. 83–96.

Brager, Gail S.; de Dear, Richard J. (2001): Climate, Comfort, & Natural Ventilation: A new adaptive comfort standard for ASHRAE Standard 55. In: Windsor Conference 2001 - Moving Thermal Comfort Standards into the 21st Century. 2nd International Windsor Conference. Oxford Brookes University, Windsor, UK, April. 

Broede, Peter; Fiala, Dusan; Blazejczyk, Krzysztof; Holmer, Ingvar; Jendritzky, Gerd; Kampmann, Bernhard et al. (2012): Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). In: International journal of biometeorology 56 (3), S. 481–494. DOI: 10.1007/s00484-011-0454-1.

Broede, Peter; Jendritzky, Gerd; Fiala, Dusan; Havenith, George (2016): The universal thermal climate index UTCI in operational use. In: NCEUB 2010 (Hg.): Windsor Conference 2010 - Adapting to Change: New Thinking of Comfort - Proceedings. Windsor Conference 2010. Cumberland Lodge, Windsor, UK, 9th-11th, April. Cumberland Lodge, Windsor, UK. 

Butera, Frederico M. (1998): Chapter 3 - Principles of thermal comfort. In: Renewable and Sustainable Energy Reviews (2), S. 39–66.

Cheng, Yuanda; Niu, Jianlei; Gao, Naiping (2012): Thermal comfort models. A review and numerical investigation. In: Building and Environment 47, S. 13–22. DOI: 10.1016/j.buildenv.2011.05.011.

Choi, Joon-Ho; Loftness, Vivian (2012): Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations. In: Building and Environment 58, S. 258–269. DOI: 10.1016/j.buildenv.2012.07.003.

Choi, Joon-Ho; Loftness, Vivian; Lee, Dong-Won (2012): Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. In: Building and Environment 50, S. 165–175. DOI: 10.1016/j.buildenv.2011.10.009.

Croitoru, Cristiana; Nastase, Ilinca; Bode, Florin; Meslem, Amina; Dogeanu, Angel (2015): Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. In: Renewable and Sustainable Energy Reviews 44, S. 304–318. DOI: 10.1016/j.rser.2014.10.105.

Danca, Paul; Vartires, Andreea; Dogeanu, Angel (2016): An Overview of Current Methods for Thermal Comfort Assessment in Vehicle Cabin. In: Energy Procedia 85, S. 162–169. DOI: 10.1016/j.egypro.2015.12.322.

Daniel Wölki; M. A. Brüntjen; Carolin Schmidt; van Treeck, Christoph: A dynamic index for transient thermal comfort prediction. In: BauSIM 2014. BauSim. 

Daniel Wölki; van Treeck, Christoph; Yi Zhang; Sebastian Stratbücker; Sandeep R. Bolineni; Andreas Holm: Individualisation of virtual thermal manikin models for predicting thermophysical responses. In: Indoor Air Conference, 2011. 

de Dear, Richard J.; Akimoto, T.; Arens, Edward A.; Brager, Gail S.; Candido, C.; Cheong, K. W. D. et al. (2013): Progress in thermal comfort research over the last twenty years. In: Indoor air 23 (6), S. 442–461. DOI: 10.1111/ina.12046.

de Dear, Richard J.; Brager, Gail S. (2002): Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. In: Energy and Buildings (34), S. 549–561.

DeGroot, David W.; Havenith, George; Kenney, W. Larry (2006): Responses to mild cold stress are predicted by different individual characteristics in young and older subjects. In: Journal of applied physiology (Bethesda, Md. : 1985) 101 (6), S. 1607–1615. DOI: 10.1152/japplphysiol.00717.2006.

den Hartog, Emiel; Havenith, George (2010): Analytical Study of the Heat Loss Attenuation by Clothing on Thermal Manikins Under Radiative Heat Loads. In: International Journal of Occupational Safety and Ergonomics (JOSE) 16 (2), S. 245–261.

Deshpande, Chinmay (2007): Thermal analysis of vascular reactivity. Master Thesis. Texas A&M University, Texas. 

Desogus, G.; Di Benedetto, S.; Ricciu, R. (2015): The use of adaptive thermal comfort models to evaluate the summer performance of a Mediterranean earth building. In: Energy and Buildings 104, S. 350–359. DOI: 10.1016/j.enbuild.2015.07.020.

Djongyang, Noël; Tchinda, René; Njomo, Donatien (2010): Thermal comfort. A review paper. In: Renewable and Sustainable Energy Reviews 14 (9), S. 2626–2640. DOI: 10.1016/j.rser.2010.07.040.

Edward A. Arens; Zhang, Hui; C. Huizenga (2006): Partial- and whole-body thermal sensation and comfort, Part I: Uniform environmental conditions. In: Journal of Thermal Biology (31), S. 53–59.

DIN EN 15251, 2007-05: Eingangsparameter für das Raumklima zur Auslegung und Bewertung der Energieeffizienz von Gebäuden - Raumluftqualität, Temperatur, Licht und Akustik; 

EPSTEIN, Yoram; MORAN, Daniel S. (2006): Thermal Comfort and the Heat Stress Indices. In: Ind Health 44 (3), S. 388–398. DOI: 10.2486/indhealth.44.388.

DIN EN ISO 9886, 2004-02: Ergonomie - Ermittlung der thermischen Beanspruchung durch physiologische Messungen. 

DIN EN ISO 9920, 2009-06: Ergonomie der thermischen Umgebung - Abschätzung der Wärmeisolation und des Verdunstungswiderstandes einer Bekleidungskombination. 

DIN EN ISO 7730, 2005-11: Ergonomie der thermischen Umgebung - Analytische Bestimmung und Interpretation der thermischen Behaglichkeit durch Berechnung des PMV- und des PPD-Indexes und Kriterien der lokalen thermischen Behaglichkeit (ISO 7730:2005); Deutsche Fassung EN ISO 7730:2005. 

DIN EN ISO 7933, 2004-08: Ergonomie der thermischen Umgebung - Analytische Bestimmung und Interpretation der Wärmebelastung durch Berechnung der vorhergesagten Wärmebeanspruchung. 

DIN EN ISO 15743:2008, 2008-07: Ergonomie der thermischen Umgebung - Arbeitsplätze in der Kälte - Risikobewertung und Management. 

DIN EN ISO 8996, 2004-10: Ergonomie der thermischen Umgebung - Bestimmung des körpereigenen Energieumsatzes. 

DIN EN ISO 11079, 2007-12: Ergonomie der thermischen Umgebung - Bestimmung und Interpretation der Kältebelastung bei Verwendung der erforderlichen Isolation der Bekleidung (IREQ) und lokalen Kühlwirkungen. 

DIN ISO/TS 14505-1, 2007-12: Ergonomie der thermischen Umgebung - Beurteilung der thermischen Umgebung in Fahrzeugen - Teil 1: Grundlagen und Verfahren für die Bewertung der thermischen Belastung. 

DIN EN ISO 14505-2, 2006-12: Ergonomie der thermischen Umgebung - Beurteilung der thermischen Umgebung in Fahrzeugen - Teil 2: Bestimmung der Äquivalenttemperatur. 

DIN EN ISO 14505-2 - Berichtigung 1, 2007-10: Ergonomie der thermischen Umgebung - Beurteilung der thermischen Umgebung in Fahrzeugen - Teil 2: Bestimmung der Äquivalenttemperatur, Berichtigung zu DIN EN ISO 14505-2:2007-04. 

DIN EN ISO 14505-3, 2006-06: Ergonomie der thermischen Umgebung - Beurteilung der thermischen Umgebung in Fahrzeugen - Teil 3: Bewertung der thermischen Behaglichkeit durch Versuchspersonen. 

ISO/TS 13732-2, 2001-03: Ergonomie der thermischen Umgebung - Bewertungsmethoden für Reaktionen des Menschen bei Kontakt mit Oberflächen - Teil 2: Menschlicher Kontakt mit moderaten Oberflächen. 

DIN EN ISO 13732-1, 2008-09: Ergonomie der thermischen Umgebung - Bewertungsverfahren für menschliche Reaktionen bei Kontakt mit Oberflächen – Teil 1: Heiße Oberflächen. 

DIN EN ISO 7243, 2015-08: Ergonomie der thermischen Umgebung - Ermittlung der Wärmebelastung durch den WBGT-Index (wet bulb globe temperature) - Entwurf. 

DIN EN ISO 15265, 2004-08: Ergonomie der thermischen Umgebung - Strategie zur Risikobeurteilung zur Abwendung von Stress oder Unbehagen unter thermischen Arbeitsbedingungen. 

DIN EN ISO 13732-3, 2008-12: Ergonomie der thermischen Umgebung -Bewertungsmethoden für Reaktionen des Menschen bei Kontakt mit Oberflächen -Teil 3: Kalte Oberflächen. 

DIN EN ISO 13731, 2001-12: Ergonomie des Umgebungsklimas - Begriffe und Symbole. 

DIN EN ISO 10551, 2001-04: Ergonomie des Umgebungsklimas - Beurteilung des Einflusses des Umgebungsklimas unter Anwendung subjektiver Bewertungsskalen. 

DIN EN ISO 11399, 2000-11: Ergonomie des Umgebungsklimas - Grundlagen und Anwendung relevanter Internationaler Normen. 

DIN EN ISO 12894, 2001-06: Ergonomie des Umgebungsklimas - Medizinische Überwachung von Personen, die einer extrem heißen oder kalten Umgebung ausgesetzt sind. 

European Commission - Institute for Health & Consumer Protection (2003): Ventilation, Good Indoor Air Quality and Rational Use of Energy. Report No 23. URBAN AIR, INDOOR ENVIRONMENT AND HUMAN EXPOSURE. Unter Mitarbeit von Working Group 16. Hg. v. Office for Official Publications of the European Communities. European Commission - Institute for Health & Consumer Protection. Luxembourg (23). Online verfügbar unter http://publications.jrc.ec.europa.eu/repository/bitstream/JRC25406/EUR%2020741%20EN.pdf. 

Fanger, P. O. (1970): Thermal comfort. Analysis and Applications in Environmental Engineering. NewYork: McGraw-Hill Book Company. 

Ferreira, M. S.; Yanagihara, J. I. (2009): A transient three-dimensional heat transfer model of the human body. In: International Journal of Heat and Mass Transfer (36), S. 718–724. DOI: 10.1016/j.icheatmasstransfer.2009.03.010.

Fetcher, E. S.; Rapaport, S. I.; Hall, J. F.; Shaub, H. G. (1949): Biophysical Requirements for the ventilation of clothing. In: Journal of Applied Physiology 1949 (2), S. 49–60.

Fiala, D.; Lomas, K. J.; Stohrer, M. (2001): Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. In: International journal of biometeorology 45 (3), S. 143–159. DOI: 10.1007/s004840100099.

Fiala, Dusan (1998): Dynamic Simulation of Human Heat Transfer and Thermal Comfort. Dissertation. De Montfort University Leicester; FH Stuttgart - Hochschule für Technik, Leicester, Stuttgart. Institute of Energy and Sustainable Development; Joseph-von-Egle Institut für angewandte Forschung. 

Fiala, Dusan; Havenith, George; Broede, Peter; Kampmann, Bernhard; Jendritzky, Gerd (2011): UTCI Fiala multi node model of human heat transfer and temperature regulation. In: International journal of biometeorology (Special Issue), S. 1–13.

Fiala, Dusan; Lomas, Kevin J. (2001): The dynamic effect of adaptive human responses in the sensation of thermal comfort. In: NCEUB 2001 (Hg.): Windsor Conference 2001 - Moving Thermal Comfort Standards into the 21 th Century. Windsor Conference 2001. Cumberland Lodge, Windsor, UK. Cumberland Lodge, Windsor, UK, S. 147–157. 

Fiala, Dusan; Lomas, Kevin J.; Strohrer, Martin (1999): A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. In: Journal of Applied Physiology 1999 (87), S. 1957–1972.

Fiala, Dusan; Lomas, Kevin J.; Strohrer, Martin (2007): Dynamic Simulation of human heat transfer and thermal comfort. In: Igor B. Mekjavić, Stylianos N. Kounalakis und Nigel A.S Taylor (Hg.): Proceedings of the 12th International Conference on Environmental Ergonomics, ICEE 2007. Piran, Slovenia, August 19-24. Ljubljana: Biomed. 

Foda, Ehab (2012): Evaluating local and overall thermal comfort in buildings using thermal manikins. Dissertation. Aalto University, Finnland. Department of Energy Technology. 

Foda, Ehab; Almesri, Issa; Awbi, Hazim B.; Sirén, Kai (2011): Models of human thermoregulation and the prediction of local and overall thermal sensations. In: Building and Environment 46 (10), S. 2023–2032. DOI: 10.1016/j.buildenv.2011.04.010.

Foda, Ehab; Siren, Kai (2011): A new approach using the Pierce two-node model for different body parts. In: International journal of biometeorology 55 (4), S. 519–532. DOI: 10.1007/s00484-010-0375-4.

Foda, Ehab; Sirén, Kai (2012a): A thermal manikin with human thermoregulatory control: Implementation and validation. In: International journal of biometeorology (56), S. 959–971.

Foda, Ehab; Sirén, Kai (2012b): Design strategy for maximizing the energy-efficiency of a localized floor-heating system using a thermal manikin with human thermoregulatory control. In: Energy and Buildings 51, S. 111–121. DOI: 10.1016/j.enbuild.2012.04.019.

Fu, G.; Jones, Byron W. (1996): Combined finite element human thermal model and finite difference clothing model. In: Environmental Ergonomics 1996, S. 166–169.

Fu, Goerge (1995): A transient, three-dimensional mathematical thermal model for the clothed human. Dissertation. Kansas State University, Manhatten, Kansas. 

Gagge, A. Pharo; Burton, A. C.; Bazett, H. C. (1941): A Practical System of Units for Description of Heat Transfer. In: Science 94 (2445), S. 428–430.

Gagge, A. Pharo; Stolwijk, Jan A. J.; Hardy, J. D. (1967a): Comfort and thermal sensation and associated physiological responses at various ambient temperatures. In: Environmental Research (1), S. 1–20.

Gagge, A. Pharo; Stolwijk, Jan A. J.; Hardy, J. D. (1967b): Comfort and thermal sensations and associated physiological responses at various ammbient temperatures. In: Environmental Research (1), S. 1–20.

Gagge, A. Pharo; Stolwijk, Jan A. J.; Saltin, B. (1968): Comfort and thermal sensation and associated physiological responses during exercise at various ambient temperatures. In: Environmental Research (2), S. 209–229.

Gallardo, Andrés; Palme, Massimo; Lobato-Cordero, Andrea; Beltrán, R.; Gaona, Gabriel (2016): Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone. In: Buildings 6 (3), S. 27. DOI: 10.3390/buildings6030027.

Geng, Q.; Holmer, Ingvar; den Hartog, Emiel; Havenith, George; Jay, Ollie; Malchaire, J. et al. (2006): Temperature limit values for touching cold surfaces with the fingertip. In: Annals of Occupational Hygiene 50 (8), S. 851–862.

Gerrett, Nicola; Redortier, Bernard; Voelcker, Thomas; Havenith, George (2011): Differences in females regional thermal comfort during exercise in warm conditions. In: S. Yokoyama (Hg.): The Fourth International Conference on Human-Environment System (ICHES 2011). ICHES2011. Sapporo, Japan, 3-6 October, S. 235–240. 

Givoni, B.; Goldman, R. F. (1971): Predicting metabolic energy cost. In: Journal of Applied Physiology 30 (3), S. 429–433.

Givoni, B.; Goldman, R. F. (1972): Predicting rectal temperature response to work, environment and clothing. In: Journal of Applied Physiology 32 (6), S. 812–822.

Givoni, B.; Goldman, R. F. (1973): Predicting heart rate response to work, environment and clothing. In: Journal of Applied Physiology 34 (2), S. 201–204.

Gonzalez, R. R.; Nishi, Y.; Gagge, A. P. (1974): Experimental evaluation of standard effective temperature a new biometeorological index of man's thermal discomfort. In: Int J Biometeorol 18 (1), S. 1–15. DOI: 10.1007/BF01450660.

Griffiths, I. D.; McIntyre, D. A. (1973): The Balance of Radiant and Air Temperature for Warmth in Older Women. In: Environmental Research 1973 (6).

Hamdi, Maher; Lachiver, Gérard; Michaud, François (1999): A new predictive thermal sensation index of human response. In: Energy and Buildings 29 (2), S. 167–178. DOI: 10.1016/S0378-7788(98)00054-1.

Hardy, J. D.; Stolwijk, Jan A. J.; Gagge, A. Pharo (1971): Chapter 5: Man. In: G. Causey Whittow (Hg.): Comperative Physiology of Thermoregulation. Vol. 2 - Mammals. Honolulu, Hawaii: Academic Press, S. 327–381. 

Havenith, George (2001): Individualized model of human thermoregulation for the simulation of heat stress response. In: Journal of Applied Physiology 2001 (90), S. 1943–1954.

Havenith, George (2007): Metabolic rate and clothing insulation data of children and adolescents during various school activities. In: Ergonomics 50 (10), S. 1689–1701.

Havenith, George; Fiala, Dusan (2015): Thermal Indices and Thermophysiological Modeling for Heat Stress. In: Comprehensive Physiology 6 (1), S. 255–302. DOI: 10.1002/cphy.c140051.

Havenith, George; Fiala, Dusan; Blazejczyk, Krzysztof; Richards, Mark G.; Broede, Peter; Holmer, Ingvar et al. (2012): The UTCI clothing model. In: International journal of biometeorology 56 (3), S. 461–470.

Havenith, George; Fogarty, Alison; Bartlett, Rebecca; Smith, Caroline J.; Ventenat, Vincent (2008a): Male and female upper body sweat distribution during running measured with technical absorbents. In: European journal of applied physiology 104 (2), S. 245–255. DOI: 10.1007/s00421-007-0636-z.

Havenith, George; Richards, Mark G.; Wang, Xiaoxin; Broede, Peter; Candas, Victor; den Hartog, Emiel et al. (2008b): Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects. In: Journal of applied physiology (Bethesda, Md. : 1985) 104 (1), S. 142–149. DOI: 10.1152/japplphysiol.00612.2007.

Havenith, George; van Middendorp, H. (1986): Determination of the individual state of acclimatization - Report. Hg. v. TNO Institute for Perception. 

Hellwig, Runa Tabea (2005): Thermische Behaglichkeit. Unterschiede zwischen frei und mechanisch belüfteten Bürogebäuden aus Nutzersicht. Dissertation. Technische Universität München, München. Institut für Entwerfen und Bautechnik; Lehrstuhl für Bauklimatik und Haustechnik. 

Hintea, Diana; Kemp, John; Brusey, James; Gaura, Elena; Beloe, Neil (2014): Applicability of thermal comfort models to car cabin environments. In: Joaquim Filipe (Hg.): 11th International Conference on Informatics in Control, Automation and Robotics. ICINCO 2014. Vienna, Austria, 1st-3rd, September. Polytechnic Institute of Setúbal / INSTICC, Portugal. 

BGI 579, 2006-15: Hitzearbeit - Erkennen, beurteilen, schützen. 

Houghton, F. C.; Yagloglou, C. P. (1923): Determining equal comfort lines. In: Journal of ASHVE 1923 (29), S. 165–176.

Huizenga, Charlie; Zhang, Hui; Arens, Edward A. (2001): A model of human physiology and comfort for assessing complex thermal environments. In: Building and Environment 36 (6), S. 691–699. DOI: 10.1016/S0360-1323(00)00061-5.

Humphreys, Michael A.; Fergus Nicol, J. (2002): The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. In: Energy and Buildings 34 (6), S. 667–684. DOI: 10.1016/S0378-7788(02)00018-X.

Ishigaki, Hidekado; Horikoshi, Tetsumi; Uematsu, Tomoki; Sahashi, Masato; Tsuchikawa, Tadahiro; Mochida, Tohru et al. (1993): Experimental study on convective heat transfer coefficent of the human body. In: Journal of Thermal Biology 1993 (18 (5/6)), S. 455–458.

Jay, Ollie; Havenith, George (2004): Finger skin cooling on contact with cold materials: An investigation of male and female responses during short-term exposures with a view on hand and finger size. In: European journal of applied physiology 91 (4), S. 373–381.

Jay, Ollie; Havenith, George (2006): Differences in finger skin contact cooling response between an arterial occlusion and a vasodilated condition. In: Journal of applied physiology (Bethesda, Md. : 1985) 100 (5), S. 1596–1601. DOI: 10.1152/japplphysiol.00760.2005.

Jendritzky, Gerd; de Dear, Richard J.; Havenith, George (2012): UTCI - why another thermal index? In: International journal of biometeorology 56 (3), S. 421–428. DOI: 10.1007/s00484-011-0513-7.

Katić, Katarina; Li, Rongling; Zeiler, Wim (2016): Thermophysiological models and their applications: A review. In: Building and Environment 106, S. 286–300. DOI: 10.1016/j.buildenv.2016.06.031.

Kaynakli, Omer; Kilic, Muhsin (2005): Investigation of indoor thermal comfort under transient conditions. In: Building and Environment 40 (2), S. 165–174. DOI: 10.1016/j.buildenv.2004.05.010.

Kingma, Boris R. M. (2011): Human Thermoregulation. A synergy between physiology and mathematical modelling. Dissertation, Maastricht. 

Kingma, Boris R. M.; Schellen, L.; Frijns, A. J. H.; van Marken Lichtenbelt, Wouter D. (2012): Thermal sensation: a mathematical model based on neurophysiology. In: Indoor air 22 (3), S. 253–262. DOI: 10.1111/j.1600-0668.2011.00758.x.

Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, Wouter D. (2014): Incorporating neurophysiological concepts in mathematical thermoregulation models. In: International journal of biometeorology 58 (1), S. 87–99. DOI: 10.1007/s00484-012-0628-5.

Kobayashi, Yutaka; Tanabe, Shin-ichi (2013): Development of JOS-2 human thermoregulation model with detailed vascular system. In: Building and Environment 66, S. 1–10. DOI: 10.1016/j.buildenv.2013.04.013.

Kohri, Itsuhei; Mochida, Tohru (2002): Evaluation Method of Thermal Comfort in a Vehicle with a Dispersed Two-Node Model Part 1 - Development of Dispersed Two-Node Model. In: JHES 6 (1), S. 19–29.

Kohri, Itsuhei; Mochida, Tohru (2003): Evaluation Method of Thermal Comfort in a Vehicle with a Dispersed Two-Node Model Part 2 - Development of New Evaluation. Process of the thermal environment in the vehicle. In: JHES 6 (2), S. 77–91. DOI: 10.1618/jhes.6.77.

Koskela, H.; Heikkinen J.; Niemelä, R.; Hautalampi, T. (2001): Turbulence correction for thermal comfort calculation. In: Building and Environment, S. 247–255.

Kurazumi, Yoshihito; Tsuchikawa, Tadahiro; Ishii, Jin; Fukagawa, Kenta; Yamato, Yoshiaki; Matsubara, Naoki (2008): Radiative and convective heat transfer coefficients of the human body in natural convection. In: Building and Environment 43 (12), S. 2142–2153. DOI: 10.1016/j.buildenv.2007.12.012.

Kuwabara, Kouhei; Mochida, Tohru; Nagano, Katsunori; Shimakura, Kazumi (2005): Experiments to determine the convective heat transfer coefficient of a thermal manikin. In: I. B. Mekjavic, E. W. Banister und J. B. Morrison (Hg.): Environmental Ergonomics - The Ergonomics of Human Comfort, Health and Performance in the Thermal Environment, Bd. 3. London: Taylor & Francis (Elsevier Ergonomics Book Series), S. 423–429. 

Li, Fengzhi; Wang, Yang; Li, Yi (2013): A Transient 3-D Thermal Model for Clothed Human Body Considering More Real Geometry. In: JCP 8 (3). DOI: 10.4304/jcp.8.3.676-684.

Liang, Chuanzhi; Zheng, Guozhong; Zhu, Neng; Tian, Zhe; Lu, Shilei; Chen, Ying (2011): A new environmental heat stress index for indoor hot and humid environments based on Cox regression. In: Building and Environment 46 (12), S. 2472–2479. DOI: 10.1016/j.buildenv.2011.06.013.

Machle, Willard; Hatch, T. F. (1947): Heat Mans exchanges and physiological responses. In: Physiological Reviews (27 (2)), S. 200–227.

Macpherson, R. K. (1962): The Assessment of the thermal environment. A review. In: British Journal of Industrial Medicine 1962 (19), S. 151–164.

McIntyre, D. A. (1978): Seven Point Scale Of Warmth. In: BSE 1978 (45).

Ming, Fu (2014): A model of heat and moisture transfer through clothing integrated with the UC Berkeley comfort model. In: Building and Environment 2014. Online verfügbar unter http://escholarship.org/uc/item/2xb9w37j.

Mishra, A. K.; Loomans, M.G.L.C.; Hensen, J.L.M. (2016): Thermal comfort of heterogeneous and dynamic indoor conditions - An overview. In: Building and Environment 109, S. 82–100. DOI: 10.1016/j.buildenv.2016.09.016.

Möhlenkamp, Martin; Schmidt, Martin; Wick, Andreas; Gores, Ingo; Müller, Dirk: Thermischer Komfort von Quelllüftungskonzepten bei verschiedenen mittleren Raumtemperaturen. In: DKV (Hg.): DKV Tagung 2015. Dresden. DKV. 

Möhlenkamp, Martin; Wesseling, Mark; Wick, Andreas; Gores, Ingo; Müller, Dirk: Thermischer Komfort bei Quelllüftung – Abhängigkeit von Raumtemperatur und Temperaturgradient. In: DKV (Hg.): DKV Tagung 2016. Kassel. DKV. 

Möhlenkamp, Martin; Wesseling, Mark; Wick, Andreas; Gores, Ingo; Müller, Dirk (2016): Thermal comfort of displacement ventilation in environments with different mean room temperatures. In: NCEUB 2016 (Hg.): Windsor Conference 2016 - Making Comfort Relevant - Proceedings. 9th International Windsor Conference. Unter Mitarbeit von Luisa. Brotas, Susan. Roaf, Fergus Nicol und Michael Humphreys. Windsor Conference 2016. Cumberland Lodge, Windsor Great Park, UK, 7th-10th, April. Cumberland Lodge, Windsor, UK. 

Mucha, K.; Nytsch-Geusen, C.; Wölki, Daniel; van Treeck, Christoph (2015): A zonal room model in combined simulation with a physiological human response model to quantify indoor heat stress risks. In: Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association. Unter Mitarbeit von J. Mathur und V. Garg. Building Simulation 2015. Hyderabad, Indien, Dec. 7-9. IBPSA. Hyderabad: BS Publications, S. 442–448. 

Munir, Abdul; Takada, Satoru; Matsushita, Takayuki (2009): Re-evaluation of Stolwijk's 25-node human thermal model under thermal-transient conditions. Prediction of skin temperature in low-activity conditions. In: Building and Environment 44 (9), S. 1777–1787. DOI: 10.1016/j.buildenv.2008.11.016.

Nadel, E. R.; Mitchell, J. W.; Stolwijk, Jan A. J. (1973): Differential thermal sensitivity in the human skin. In: Pflügers Archiv (340), S. 71–76.

Nicol, Fergus (2004): Adaptive thermal comfort standards in the hot–humid tropics. In: Energy and Buildings 36 (7), S. 628–637. DOI: 10.1016/j.enbuild.2004.01.016.

Nicol, Fergus; Humphreys, Michael (2010): Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. In: Building and Environment 45 (1), S. 11–17. DOI: 10.1016/j.buildenv.2008.12.013.

Nicol, J. F.; Humphreys, M. A. (2002): Adaptive thermal comfort and sustainable thermal standards for buildings. In: Energy and Buildings 34 (6), S. 563–572. DOI: 10.1016/S0378-7788(02)00006-3.

Nilsson, Håkan O. (2004): Comfort climate evaluation with thermal manikin methods and computer simulation models. Stockholm: National Institute for Working Life (Arbete och hälsa vetenskaplig skriftserie, NR 2004:2). 

Nilsson, Håkan O. (2007): Thermal comfort evaluation with virtual manikin methods. In: Building and Environment 42 (12), S. 4000–4005. DOI: 10.1016/j.buildenv.2006.04.027.

Nishi, Yasunobu; Gagge, A. Pharo (1977): Effective Temperature Scale Useful for Hypo- and Hyperbaric Environments. In: Aviation Space Environmental Medicine 48 (2), S. 97–107.

O’ Donovan, Adam; O’ Sullivan, Paul D.; Murphy, Michael D.: A field study on the thermal comfort performance of a ventilative cooling system in a retrofitted low energy building. In: CLIMA 2013. CLIMA. 

Ole Fanger, P.; Toftum, Jørn (2002): Extension of the PMV model to non-air-conditioned buildings in warm climates. In: Energy and Buildings 34 (6), S. 533–536. DOI: 10.1016/S0378-7788(02)00003-8.

Ouzzahra, Yacine; Redortier, Bernard; Voelcker, Thomas; Havenith, George: Upper and lower body sensitivity to cold at rest and during exercise, S. 169–173. 

Parkinson, Thomas; de Dear, Richard J. (2016): Thermal pleasure in built environments. Spatial alliesthesia from air movement. In: Building Research & Information, S. 1–16. DOI: 10.1080/09613218.2016.1140932.

Parsons, K. C. (2014): Human Thermal Environments. The effects of hot, moderate, and cold environments on human health, comfort and performance. 3. Aufl. London und New York: Taylor & Francis. 

Pennes, Harry H. (1948): Analysis of tissue and arterial blood temperature in the resting human forearm. In: Journal of Applied Physiology 1 (2), S. 93–122.

Prek, Matjaz (2006): Thermodynamical analysis of human thermal comfort. In: Energy 31 (5), S. 732–743. DOI: 10.1016/j.energy.2005.05.001.

Psikuta, Agnieszka (2009): Development of an 'artificial human' for clothing research. Dissertation. De Montfort University Leicester, Leicester. Institute of Energy and Sustainable Development. 

Psikuta, Agnieszka; Richards, Mark; Fiala, Dusan (2008): Single-sector thermophysiological human simulator. In: Physiological measurement 29 (2), S. 181–192. DOI: 10.1088/0967-3334/29/2/002.

Raja, Iftikhar A.; Nicol, Fergus; McCartney, Kathryn J.; Humphreys, M. A. (2001): Thermal comfort: use of controls in naturally ventilated buildings. In: Energy and Buildings (33), S. 235–244.

Rapaport, S. I.; Fetcher, E. S.; Shaub, H. G.; Hall, J. F. (1949): Control of blood flow to the extremities at low ambient temperatures. In: Journal of Applied Physiology (2), S. 61–71.

Raven, P. R.; Horvath, S. M. (1970): Variability of physiological parameters of unacclimatized males during a two—hour cold stress of 5°C. In: Int J Biometeorol 14 (3), S. 309–320. DOI: 10.1007/BF01742075.

Rupp, Ricardo Forgiarini; Vásquez, Natalia Giraldo; Lamberts, Roberto (2015): A review of human thermal comfort in the built environment. In: Energy and Buildings 105, S. 178–205. DOI: 10.1016/j.enbuild.2015.07.047.

Sakoi, Tomonori; Tsuzuki, Kazuyo; Kato, Shinsuke; Ooka, Ryozo; Song, Doosam; Zhu, Shengwei (2007): Thermal comfort, skin temperature distribution, and sensible heat loss distribution in the sitting posture in various asymmetric radiant fields. In: Building and Environment 42 (12), S. 3984–3999. DOI: 10.1016/j.buildenv.2006.10.050.

Schellen, L.; Loomans, M.G.L.C.; Kingma, Boris R. M.; Wit, M. H. de; Frijns, A. J. H.; van Marken Lichtenbelt, Wouter D. (2013): The use of a thermophysiological model in the built environment to predict thermal sensation. Coupling with the indoor environment and thermal sensation. In: Building and Environment 59, S. 10–22. DOI: 10.1016/j.buildenv.2012.07.010.

Schellen, L.; Loomans, M G L C; Wit, M. H. de; Olesen, B. W.; van Marken Lichtenbelt, W D (2012): The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling. In: Physiology & behavior 107 (2), S. 252–261. DOI: 10.1016/j.physbeh.2012.07.008.

Schmidt, Carolin; Wölki, Daniel; Grün, Gunnar (2012): Accuracy of mean skin temperature calculations and mean thermal comfort related assessment. In: NCEUB 2012 (Hg.): Windsor Conference 2012 - The changing context of comfort in an unpredictable world. Windsor Conference 2012. Cumberland Lodge, Windsor, UK, 12th-15th, April. Cumberland Lodge, Windsor, UK. 

Schwarz, Michael; Krueger, Martin W.; Busch, Hans-Jorg; Benk, Christoph; Heilmann, Claudia (2010): Model-based assessment of tissue perfusion and temperature in deep hypothermic patients. In: IEEE transactions on bio-medical engineering 57 (7), S. 1577–1586. DOI: 10.1109/TBME.2010.2048324.

Schweiker, Marcel; Fuchs, Xaver; Becker, Susanne; Shukuya, Masanori; Dovjak, Mateja; Hawighorst, Maren; Kolarik, Jakub (2016): Challenging the assumptions for thermal sensation scales. In: Building Research & Information, S. 1–18. DOI: 10.1080/09613218.2016.1183185.

Severens, N. M. W.; van Marken Lichtenbelt, W D; Frijns, A. J. H.; van Steenhoven, A. A.; de Mol, B A J M; Sessler, D. I. (2007): A model to predict patient temperature during cardiac surgery. In: Physics in medicine and biology 52 (17), S. 5131–5145. DOI: 10.1088/0031-9155/52/17/002.

Smith, P.; Twizell, E. H. (1984): A transient model of thermoregulation in a clothed human. In: Applied Mathematical Modelling 8 (3), S. 211–216. DOI: 10.1016/0307-904X(84)90092-1.

Stolwijk, Jan A. J. (1971): A mathematical model of physiological temperature regulation in man. Contractor Report. National Aeronautics and Space Administration (NASA). New Haven, Connecticut 06510. 

Stolwijk, Jan A. J.; Hardy, J. D. (1966a): Partitional calorimetric studies of man during exposures to thermal transients. In: Journal of Applied Physiology (21), S. 1799–1806.

Stolwijk, Jan A. J.; Hardy, J. D. (1966b): Partitional calorimetric studies of responses of man to thermal transients. In: Journal of Applied Physiology (21), S. 967–977.

Stolwijk, Jan A. J.; Hardy, J. D. (1966c): Temperature regulation in man. A theoretical study. In: Pflügers Archiv 1966 (291), S. 129–162.

Stolwijk, Jan A. J.; Hardy, J. D. (1977): Control of body temperature. In: Handbook of Physiology, Reactions to Environmental Agents, S. 45–68. DOI: 10.1002/cphy.cp090104.

Sun, Xiaoyang (2012): Development of an improved thermal model of the human body and an experimental investigation of heat transfer from a moving cylinder. Dissertation. Kansas State University, Manhatten, Kansas. Department of Mechanical and Nuclear Engineering. 

Takada, Satoru; Kobayashi, Hiroaki; Matsushita, Takayuki (2009): Thermal model of human body fitted with individual characteristics of body temperature regulation. In: Building and Environment 44 (3), S. 463–470. DOI: 10.1016/j.buildenv.2008.04.007.

Tanabe, Shin-ichi; Kimura, K.; Hara, T. (1987): Thermal comfort requirements during the summer season in japan. In: ASHRAE (Hg.): ASHRAE Transactions, Bd. 3048. ASHRAE Transactions. ASHRAE, S. 564–577. 

Tanabe, Shin-ichi; Kobayashi, Kozo; Nakano, Junta; Ozeki, Yoshiichi; Konishi, Masaaki (2002): Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). In: Energy and Buildings 34 (6), S. 637–646. DOI: 10.1016/S0378-7788(02)00014-2.

Tang, Yuanliang; He, Ying; Shao, Hongwei; Ji, Changjin (2016): Assessment of comfortable clothing thermal resistance using a multi-scale human thermoregulatory model. In: International Journal of Heat and Mass Transfer (98), S. 568–583.

ASHRAE Standard 55, 2013: Thermal Environmental Conditions for Human Occupancy. 

Tian, Zhe; Zhu, Neng; Zheng, Guozhong; Wei, Huijiao (2011): Experimental study on physiological and psychological effects of heat acclimatization in extreme hot environments. In: Building and Environment 46 (10), S. 2033–2041. DOI: 10.1016/j.buildenv.2011.04.027.

Tsutsumi, Hitomi; Tanabe, Shin-ichi; Harigaya, Junkichi; Iguchi, Yasuo; Nakamura, Gen (2007): Effect of humidity on human comfort and productivity after step changes from warm and humid environment. In: Building and Environment 42 (12), S. 4034–4042. DOI: 10.1016/j.buildenv.2006.06.037.

EN ISO 7726, 2001-07: Umgebungsklima - Instrumente zur Messung physikalischer Größen. 

van Hoof, Joost (2008): Forty years of Fanger's model of thermal comfort: comfort for all? In: Indoor air 18 (3), S. 182–201. DOI: 10.1111/j.1600-0668.2007.00516.x.

van Hoof, Joost; Hensen, Jan L.M. (2007): Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones. In: Building and Environment 42 (1), S. 156–170. DOI: 10.1016/j.buildenv.2005.08.023.

Vesela, Stephanie; Kingma, Boris R. M.; Frijns, A. J. H. (2016): Impact of local clothing values on local skin temperature simulation. In: NCEUB 2016 (Hg.): Windsor Conference 2016 - Making Comfort Relevant - Proceedings. 9th International Windsor Conference. Unter Mitarbeit von Luisa. Brotas, Susan. Roaf, Fergus Nicol und Michael Humphreys. Windsor Conference 2016. Cumberland Lodge, Windsor Great Park, UK, 7th-10th, April. Cumberland Lodge, Windsor, UK. 

Wang, Danni; Zhang, Hui; Arens, Edward A.; Huizenga, Charlie (2007): Observations of upper-extremity skin temperature and corresponding overall-body thermal sensations and comfort. In: Building and Environment 42 (12), S. 3933–3943. DOI: 10.1016/j.buildenv.2006.06.035.

Werner, J. (1990): Properties of the human thermostat Results from mathematical and experimental analyses. In: Proceedings of the International Conference on Environmental Ergonomics IV. Austin, Texas. University of Texas, S. 24–25. 

Werner, J.; Reents, T. (1980): A contribution to the topography of temperature regulation in man. In: Europ. J. Appl. Physiol. 45 (1), S. 87–94. DOI: 10.1007/BF00421205.

West, John B.; Milledge, James S.; Schoene, Robert B.; Luks, Andrew (2013): High altitude medicine and physiology. Fifth edition. Boca Raton: CRC Press/Taylor & Francis Group. 

Wissler, E. H. (1961): Steady state temperature distribution in man. In: Journal of Applied Physiology 16 (4), S. 734–740.

Wissler, E. H. (1964): A mathematical model of the human thermal system. In: Bulletin of Mathematical Biophysics (26), S. 147–166.

Wissler, E. H. (1985): Mathematical simulation of human thermal behaivor using whole body models. In: Avraham Shitzer und Robert C. Eberhart (Hg.): Heat Transfer in Medicine and Biology. Analysis and Applications. Volume 1. 1. Aufl. NewYork: Plenum, S. 325–373. 

Wissler, E. H. (2005): A review of human thermal models. Unter Mitarbeit von I. B. Mekjavic, E. W. Banister und J. B. (eds) Morrison. In: I. B. Mekjavic, E. W. Banister und J. B. Morrison (Hg.): Environmental Ergonomics - The Ergonomics of Human Comfort, Health and Performance in the Thermal Environment. London: Taylor & Francis (Elsevier Ergonomics Book Series), S. 267–285. 

Xiong, Jing; Zhou, Xin; Lian, Zhiwei; You, Jianxiong; Lin, Yanbing (2016): Thermal perception and skin temperature in different transient thermal environments in summer. In: Energy and Buildings 128, S. 155–163. DOI: 10.1016/j.enbuild.2016.06.085.

Yang, Yu; Li, Baizhan; Liu, Hong; Tan, Meilan; Yao, Runming (2015a): A study of adaptive thermal comfort in a well-controlled climate chamber. In: Applied Thermal Engineering 76, S. 283–291. DOI: 10.1016/j.applthermaleng.2014.11.004.

Yang, Yu; Yao, Runming; Li, Baizhan; Liu, Hong; Jiang, Lai (2015b): A method of evaluating the accuracy of human body thermoregulation models. In: Building and Environment 87, S. 1–9. DOI: 10.1016/j.buildenv.2015.01.013.

Yildirim, Eda Didem; Ozerdem, Baris (2008): A numerical simulation study for the human passive thermal system. In: Energy and Buildings 40 (7), S. 1117–1123. DOI: 10.1016/j.enbuild.2007.10.015.

Zhang, Guoqiang; Zheng, Cong; Yang, Wei; Zhang, Quan; Moschandreas, D. J. (2007): Thermal Comfort Investigation of Naturally Ventilated Classrooms in a Subtropical Region. In: Indoor and Built Environment 16 (2), S. 148–158. DOI: 10.1177/1420326X06076792.

Zhang, Hui; Arens, Edward A.; Huizenga, Charlie; Han, Taeyoung (2010a): Thermal sensation and comfort models for non-uniform and transient environments, part I: Local sensation of individual body parts. In: Building and Environment 45 (2), S. 380–388. DOI: 10.1016/j.buildenv.2009.06.018.

Zhang, Hui; Arens, Edward A.; Huizenga, Charlie; Han, Taeyoung (2010b): Thermal sensation and comfort models for non-uniform and transient environments, part II: Local comfort of individual body parts. In: Building and Environment 45 (2), S. 389–398. DOI: 10.1016/j.buildenv.2009.06.015.

Zhang, Hui; Arens, Edward A.; Huizenga, Charlie; Han, Taeyoung (2010c): Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort. In: Building and Environment 45 (2), S. 399–410. DOI: 10.1016/j.buildenv.2009.06.020.

Zhang, Hui; Arens, Edward A.; Kim, DongEun; Buchberger, Elena; Bauman, Fred; Huizenga, Charlie (2010d): Comfort, perceived air quality, and work performance in a low-power task–ambient conditioning system. In: Building and Environment 45 (1), S. 29–39. DOI: 10.1016/j.buildenv.2009.02.016.

Zhang, Hui; Arens, Edward A.; Zhai, Yongchao (2015): A review of the corrective power of personal comfort systems in non-neutral ambient environments. In: Building and Environment 91, S. 15–41. DOI: 10.1016/j.buildenv.2015.03.013.

Zhang, Hui; Huizenga, Charlie; Arens, Edward A.; Yu, Tiefeng (2001): Considering individual physiological differences in a human thermal model. In: Journal of Thermal Biology 26 (4-5), S. 401–408. DOI: 10.1016/S0306-4565(01)00051-1.

Zhang, Y.; Chen, H.; Wang, J.; Meng, Q. (2016): Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history. In: Indoor air 26 (5), S. 820–830. DOI: 10.1111/ina.12256.

Zhou, Xin; Lian, Zhiwei; Lan, Li (2013): An individualized human thermoregulation model for Chinese adults. In: Building and Environment 70, S. 257–265. DOI: 10.1016/j.buildenv.2013.08.031.

Zhu, Mingming; Ackerman, Joseph J. H.; Sukstanskii, Alexander L.; Yablonskiy, Dmitriy A. (2006): How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. In: Journal of applied physiology (Bethesda, Md. : 1985) 101 (5), S. 1481–1488. DOI: 10.1152/japplphysiol.00319.2006.

Zolfaghari, Alireza; Maerefat, Mehdi (2010a): A new simplified model for evaluating non-uniform thermal sensation caused by wearing clothing. In: Building and Environment 45 (3), S. 776–783. DOI: 10.1016/j.buildenv.2009.08.015.

Zolfaghari, Alireza; Maerefat, Mehdi (2010b): A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments. In: Building and Environment 45 (10), S. 2068–2076. DOI: 10.1016/j.buildenv.2010.03.002.

Zolfaghari, Alireza; Maerefat, Mehdi (2011): A new predictive index for evaluating both thermal sensation and thermal response of the human body. In: Building and Environment 46 (4), S. 855–862. DOI: 10.1016/j.buildenv.2010.10.011.